Green sea urchin ranching in the Gulf of Alaska: how do location and food influence market readiness

<u>Abstract</u>

Sea urchin ranching is advantageous for both coastal health and the human seafood market. In some coastal areas, sea urchins have become hyperabundant and have overgrazed kelp forests, turning these forests into barrens devoid of most seaweeds. A solution to reduce these hyperabundant sea urchins is to harvest them for consumption; however, this is impractical because their gonads (roe, the marketable portion of the urchin) are very small due to a lack of their natural food, seaweeds, in barrens. To be marketable, sea urchins from barrens must be collected and then ranched, i.e., fed supplemental food so that their gonads can grow to a marketable size and quality. Currently, information about the influence of ranching location, food, and time-to-market is needed and proof of concept studies are scarce. To establish new sea urchin ranching regions, there is a need to determine 1) if ranching location influences market-readiness, 2) the time needed for starved urchin gonads to become market-ready, and 3) the relative success of different types of farmer-accessible food based on sea urchin morphological characteristics. To address this information gap, we collected green sea urchins (Strongylocentrotus droebachiensis) from a high latitude barren in Alaska after which they were ranched at three locations and either starved or fed various types of food: bull kelp (Nereocystis leutkeana), wrack composed of either kelp (mixed species) or rockweed (Fucus distichus), kelp (mixed species) fouling on docks/lines/buoys, and manufactured kelp pellets. It was found that ranching location had no effect on the marketability of the ranched sea urchins. Additionally, all harvested urchins that were fed various types of kelp food became marketable in 6-8 weeks with relatively equal success. Non-kelp food (F. distichus) performed as poorly as the starved controls and wild-caught barren sea urchins. This study demonstrates the feasibility of green sea urchin ranching in high latitude environments.

Introduction

Sea urchins have been wild-harvested for at least 40,000 years (Kaharudin et al. 2024). Harvesting has been done by hand, using scuba, and by trawling (Reynolds and Wilen 2000). In the last few decades, a rapidly increasing sea urchin harvest has raised concerns in some regions because of the important role that sea urchins have in coastal ecosystems (Brundu et al. 2020). In other regions, once productive kelp forests have been overgrazed by an overabundance of urchins because of a reduction in local sea urchin predators (Estes and Duggins 1995, Flukes et al. 2012, Filbee-Dexter and Scheibling 2014). These sea urchin-rich and now kelp-depleted areas are referred to as barrens. They have very little seaweed biomass and are generally thought of as impoverished with low production and diversity (Metzger et al. 2019, Edwards et al. 2020). To restore barrens to thriving kelp forests, culling is often used for sea urchin removal (Guarnieri et al. 2020, Miller et al. 2022, 2024, Miller and Shears 2023). As an alternative to culling, harvesting sea urchins and ranching them for the seafood industry is gaining popularity.

Sea urchins cannot be directly harvested from barrens for the immediate use in the seafood market because sea urchin abundance is negatively correlated with gonad size and growth rate (Konar 2001, Claisse et al. 2013). Hence, barrens typically have a high abundance of sea urchins with very little gonad development. In some areas, sea urchin populations are being thinned using Quicklime (CaO), which efficiently kills sea urchins with the hopes that the remaining sea urchins will be able to increase their gonad size to commercial levels within 1-2 years (Strand et al. 2020). Kelp restoration is also being attempted by harvesting sea urchins

and then ranching them so that they can be sold as a premium seafood (Piazzi and Ceccherelli 2019). While this is often accomplished at large commercial enterprises, coastal community members, existing aquaculture farmers, or tribal entities could ranch sea urchins on a small scale if local and reliable food sources could be found that would transform starved sea urchins into a marketable product.

It is known that sea urchin feeding rates and gonad indices (GI) are highest on a diet of preferred food, which varies with sea urchin species but often includes kelp (Laminariales) (Keats et al. 1984). Wrack (seaweed that has washed up on beaches) might provide similar results as fresh kelp as dried kelp has resulted in fast sea urchin gonad development (Carrier et al. 2017). Other marketable gonad characteristics such as their taste and smell have been found to be better in sea urchins collected from the wild or fed natural diets than in sea urchins fed animal and vegetable diets (Senaratna et al. 2005). Although prepared feed has been developed for sea urchins and can result in fast gonad growth, their testing on green sea urchins (*Strongylocentrotus droebachiensis*) is limited; in addition, commercial feeds can also be expensive and may not be economically feasible (Pearce et al. 2002).

In the northern Gulf of Alaska, and across other high latitude regions, green sea urchins are the dominant species and form barrens. Generally, green sea urchin test sizes and GI are smaller in barrens compared to kelp forests (Konar 2001). Along the Alaska Aleutian coast, sea urchin densities in barrens can average 120 urchins per square meter but have very low GI (Weitzman et al. 2023, Konar 2001). In the northern Gulf of Alaska, much less is known about the sea urchin populations other than that barrens exist (authors, pers obs.).

One characteristic that impacts sea urchin grazing rates, and by expansion gonad development, is the relative size of the Aristotle lantern (Lantern Index-LI), which is the mouth part used for feeding. Sea urchins with larger lanterns can take larger bites out of macroalgae and hence, can consume more (Black et al. 1984). In addition, the size of the lantern can vary (either increase or decrease in size) depending on food source (Heflin et al. 2012, Levitan 1991, Ebert 1980). The most important characteristic that determines market-readiness is the relative weight of gonads to body weight (Gonad Index-GI). A GI over 15% is considered market-ready (Angwin et al. 2022), with food availability being the key factor regulating the relative size of gonads (Garrido et al. 2001). A morphological characteristic that has had variable results in relation to feeding is the gut index (Konar 2001). This index can vary by diet (Barker et al. 1998, Meidel and Scheibling 1998, 1999) but can also not differ between fed and starved urchins (Guillou et al. 2000). Lastly, gonad color (Shpigel et al. 2006, Ciriminna et al. 2021) and firmness (Jangoux 1998) are important characteristics for market readiness with firm, yellow to orange colored gonads preferred over soft brown to grey gonads (Pert et al. 2018). Gonad firmness, in particular, has been found to be influenced by food (Siikavuopio et al. 2007). While the collection site of sea urchins has been shown to have no impact on sea urchin ranching results (James et al. 2023), ranching location has not been explored.

Here, we examine how sea urchin morphological characteristics are influenced by the type of food they are fed and also by the specific location where they are being ranched. As ranching locations for small-scale farmers would be most accessible through existing surface structures, such as docks or mariculture structures, we aimed to assess if location would have a strong impact on sea urchin gonad development. We also focused on the effects of naturally available foods (macroalgae) in comparison to a manufactured sea urchin food. The purpose of this study is to provide a case study for sea urchin ranching in a high-latitude environment.

Methods

Study Sites

Sea urchin ranching was conducted in Kachemak Bay, northern Gulf of Alaska (Fig. 1). This is a large estuary with existing mariculture interests and oyster and seaweed farm presence in its smaller bays and coves. Along with local subsistence, recreational, and commercial fishing, this region also has the highest density of oyster farms in Alaska. Sea urchins were ranched at two oyster farms in Kachemak Bay (Moss Island Farm in Peterson Bay and Oyster Bay Farm in Bootleggers Cove) in summer 2024 and off the dock at the Kasitsna Bay Laboratory in summer 2024 and 2025. While kelp forests dominate most rocky subtidal substrates in Kachemak Bay, a large and persistent barren exists adjacent to Homer Spit, which was our sea urchin collection site (Fig. 1). This barren is largely dominated by the green sea urchin, *S. droebachiensis* and has little to no kelp or other foliose seaweeds. Sea urchins were hand-collected by divers on scuba and then transported in less than one hour to the Kasitsna Bay Laboratory in large tubs of seawater. Here, they were held in running seawater without food until placement at the farming locations, which was within one week. There was no mortality of sea urchins during the transportation or holding periods.

8-12 Week Ranching Trial in 2024

In an initial trial, we wanted to determine if ranching location and different types of kelp-based food influenced sea urchin morphological characteristics, including gonad development. For this, in May 2024, the largest green sea urchins at the barren were collected. These sea urchins ranged in size from 30-50 mm, averaging 41.8±4.6 mm. From these sea urchins, twelve randomly selected sea urchins were immediately dissected and morphometrics and gonad characteristics were quantified as an initial baseline. All sea urchins were measured for test diameter (mm), total wet weight (g), Aristotle lantern weight (g), gonad weight (g), and gut weight (g). From these measurements, various indices were calculated as a ratio between total weight and the variable of interest, i.e., lantern index, gonad index, and gut index. In addition to these morphological and reproductive measures, we also graded gonad color and firmness to assess market readiness (similar to Pert et al. 2018). For this, gonads were separated into two color categories: (1) yellow to orange, and (2) black, brown or grey. Finally, gonads were rated for firmness based on their ability to maintain consistency when placed under different weights: 20, 50, 100, and 200 g (similar to Pert et al. 2018).

Remaining sea urchins from this initial collection were randomly separated into three groups of 135 for placement at three different ranching sites (Fig 1; Moss Island Farm in Peterson Bay, Oyster Cove Farm in Bootleggers Cove, and the dock at the Kasitsna Bay Laboratory). At each of these sites, the 135 sea urchins were further divided into 15 groups of nine, which were placed into minnow traps (nine sea urchins per trap, 15 traps total). Traps were randomly arranged at each site with three traps attached to one line to be suspended from a dock surface structure. Traps were placed from a depth of about 0.5 to 3.0 m below the surface, and lines were at least 2 m apart from one another. Field experiments using *in situ* cages for gonad enhancement have been successfully used before (Juinio-Meñez et al. 2008).

Sea urchins in suspended traps were haphazardly assigned to a feeding treatment where they were either not fed or fed different types of kelp *ad libitum*. This type of feeding has resulted in high rates of growth and reproduction in green sea urchins elsewhere (Minor and Scheibling 1997, Walker and Lesser 1998, Meidel and Scheibling 1998). At each site, three traps (with nine sea urchins each) were fed either 1) fresh kelp wrack that was available from local beaches, which was a mix of different kelp species, 2) manufactured kelp pellets designed and donated to this project by The Nature Conservancy (TNC), 3) fresh bull kelp (*Nereocystis leutkeana*), or 4)

a mix of different kelp species that was found fouling local farm gear and docks. The TNC pellets were developed as a sea urchin feed solution that is consistent and not dependent upon the availability of local kelp products. While this feed has not yet been tested on green sea urchins, it has resulted in premium gonad product for sea urchin ranchers in California. The other feeding treatments were selected as they were deemed easily accessible to anyone who would want to ranch sea urchins in the study area. In addition to fed sea urchins, three traps with nine sea urchins each were not fed (i.e., starved controls).

To assess ranching success, three sea urchins from each trap were randomly selected at weeks 8, 10, and 12 after the start of the feeding trial, and sea urchin morphometrics and gonad characteristics were determined (as discussed above). This resulted in nine sea urchins from each feeding treatment and site per sampling event. In another study, green sea urchins more than doubled their GI in an eight-week lab experiment when fed *ad libitum* (Christiansen and Siikavuopio 2007). At each sampling event, we also collected nine sea urchins from the barren to compare gonads of ranched sea urchins to those of the wild population.

Consumption Rates in 2024 Ranching Trial

To help guide farmers on the amount of food that is needed to feed green sea urchins *ad libitum* and to determine if consumption rates differed among the feed types in 2024, the amount (wet weight in grams) of bull kelp, kelp wrack, and fouling kelp consumed was determined each time the sea urchins were fed for the first 11 weeks of the trial. At each sampling period, left-over food was removed and weighed and replaced with a pre-weighed amount of new food. At no time, did sea urchins consume all the food in their trap. This included pellets, which were not included in this analysis because once saturated, the pellets dissolve quickly upon touch and weight loss over time simply due to grazing could not be quantitatively assessed. Consumption rate was calculated per sea urchin in weeks 8 and 10 by dividing the total amount consumed by the total number of sea urchins in a trap (typically either 9 or 6, depending on week).

2-8 Week Ranching Trial in 2025

Based on the quick gonad development observed in 2024, we examined sea urchin ranching on a shorter time scale in 2025. Sea urchins were again collected from the barren and the ranching trial was conducted at the Kasitsna Bay dock only with the following feeding treatments: starved control-no food, wrack that mostly consisted of *Fucus distichus*, which is very common in the wrack, TNC pellets (as described above), and kelp found fouling on the dock. Sea urchins were fed similar amounts as during the first trial in 2024 with no feeding treatment ever running out of food between sampling periods. These urchins were assessed for the same morphometric measurements (except for LI) at weeks 2, 4, 6, and 8 to better resolve the early development of the sea urchin gonads. During each assessment, nine sea urchins were collected from the barren as a wild control.

Analyses

PERMANOVA (PRIMER-e ltd; Anderson et al. 2008) was used to determine if morphological measures and gonad characteristics differed significantly among feeding treatments (starved controls and different feeds) and over time (initial and then every two weeks; 2024 examined weeks 8-12 and 2025 examined weeks 2-8). In 2024, ranching location was included as a random factor in the PERMANOVA (three sites). nMDS and univariate bar graphs were used to visualize differences in morphological characteristics, including gonad structure based on feeding treatments (and location) over time. One-way ANOVAs were used to determine differences across treatments for each univariate measure for each time interval (R Core Team 2024). Post-hoc comparisons using Tukey's HSD test were used to determine which specific

treatment difference contributed to the overall significant effect. A one-way ANOVA and Tukey's HSD test were also used to determine if there were differences in consumption rates among various feed types.

Assimilation of Food

In 2025, a small portion of the gonad of one randomly chosen sea urchin from each feeding treatment and trap (three sea urchins total per treatment and sampling event) were kept frozen for later stable carbon and nitrogen isotope analysis to assist in the assessment of diet assimilation. Frozen gonad samples were dried at 60 °C to dryness, for at least 48 h. Stable isotope composition was determined at the Alaska Stable Isotope Facility (ASIF) at the University of Alaska Fairbanks using continuous-flow isotope ratio mass spectrometry on a Thermo Scientific Flash 2000 elemental analyzer and Thermo Scientific Conflo IV interfaced with a Thermo Scientific DeltaVPlus mass spectrometer. Approximately 0.3–0.5 mg gonad material were used for the analyses. Results are expressed as conventional δ notation in parts per thousand (‰) according to the following equation: δX (‰) = ([Rsample/Rstandard] – 1) × 1000, where X is 13 C or 15 N of the sample and R is the corresponding 13 C: 12 C or 15 N: 14 N ratio. Pee Dee Belemnite and atmospheric N2 served as standards for carbon and nitrogen, respectively. Instrument error at ASIF for either isotope was <0.2 ‰. Here, we used the carbon stable isotope values of gonads during the 2025 trial to assess the assimilation of the provided foods for gonad production.

Results

8-12 Week Ranching Trial in 2024

No sea urchin mortality occurred during the 8–12-week ranching trial. Sea urchins collected initially and subsequently from the barrens and starved control urchins that were ranched at the various locations had similar morphometric characteristics regardless of ranching location (Fig. 2, Table 1). Overall, ranching location and time (8-12 weeks) had no effect on results (Table 1). Sea urchins that were fed kelp wrack, pellets, bull kelp, or fouling kelp during week 8-12 also shared similar morphometric characteristics regardless of food type although the sea urchins fed TNC pellets grouped separately from the other fed sea urchins. Sea urchins fed bull kelp and fouling kelp were most similar in morphometrics (PERMANOVA, t=0.945, p(perm)=0.447), followed by fouling kelp and kelp wrack (PERMANOVA, t=2.014, p(perm)=0.017). Sea urchin morphometric measures were different between sea urchins fed bull kelp and kelp wrack (PERMANOVA, t=2.388, p(perm)=0.004). Overall, there was more variability in the sea urchins collected from the barrens and the sea urchins that were not fed (see wider spread of points in Fig. 2) compared to any of the fed sea urchins.

Lantern index was similar across time and feeding treatment (Fig. 3A) except for an unexplained peak in the sea urchins from the barren at week 8, when the LI was significantly higher (oneway ANOVA, F(5,138) = 27.673, p<0.001) in sea urchins from the barren than all other sea urchins. The LI in barren urchins was also larger in the starved control sea urchins than the pellet-fed sea urchins (p<0.05 for both comparisons). At week 10, significant differences in LI were still apparent (one-way ANOVA, F(5,138) = 2.455, p = 0.036); however, LI were only significantly larger in the barren sea urchins compared to the pellet-fed sea urchins (p<0.05). At 12 weeks, some significant differences remained (one-way ANOVA, F(5,140) = 8.754, p = p<0.001), with the LI still being larger for the barren sea urchins than any other sea urchins and the lantern indices of the starved control sea urchins also being larger than in sea urchins fed pellets or bull kelp (p<0.05 for both).

Gonad index differed based on the feeding treatments with the largest GI associated with sea urchins that were fed the pellets and the smallest associated with wild sea urchins from the barren and the starved control sea urchins (Fig. 3B). At the first-time interval at week 8, the differences in GI were significant (one-way ANOVA, F(5,138) = 65.270, p<0.001) for all treatments, except for sea urchins fed kelp wrack and both bull kelp and fouling kelp. Significant differences in GI were still found at week 10 (one-way ANOVA, F(5,138) = 129.857, p<0.001) and 12 (one-way ANOVA, F(5,140) = 132.143, p<0.001), with smaller GI in barren and starved control sea urchins compared to all others, and larger GI in the pellet-fed sea urchins compared to all others (p<0.05). In general, starting at the first sampling interval at 8 weeks, GI resulting from all feeding treatments exceeded the 15% threshold associated with marketable sea urchins.

Gut indices were generally higher in the wild and starved control sea urchins compared to other treatments (Fig. 3C). Sea urchins that were fed generally had the least amount of food in their guts. At week 8, there were significant differences in gut indices (one-way ANOVA, F(5,138) = 24.984, p = 0). Barren sea urchins had significantly larger gut indices than sea urchins in any other treatment, the starved control sea urchins had similar gut indices to kelp wrack-fed sea urchins, and the kelp wrack-fed sea urchins had similar gut indices to the fouling kelp-fed sea urchins (Fig. 3C). The sea urchins fed pellets and bull kelp had the significantly smallest gut indices at 8 weeks (p<0.05). Significant gut index differences continued through week 10 (ANOVA, F(5,138) = 36.037, p = 0) and 12 (one-way ANOVA, F(5,140) = 34.218, p<0.001). In week 10, the barren sea urchins had significantly larger gut indices than any other sea urchins. In addition, the control and kelp wrack-fed sea urchins had similar gut indices and the bull kelp and fouling kelp-fed sea urchins were similar (p<0.05). Also, at week 10, the pellet-fed sea urchins had significantly smaller gut indices than any other sea urchins (p<0.05). The 12-week measurements were similar to week 10, except that the pellet-fed sea urchins were now similar in their gut index to the bull kelp and fouling kelp fed sea urchins.

Gonad color was similarly yellow-orange (aligned with category 1) in all ranched sea urchins that were fed (Fig. 3D). Barren and starved control sea urchins generally had brown-grey colored gonads (aligned with category 2). Significant differences in gonad color were already observed by week 8 (one-way ANOVA, F(5,138) = 12.777, p<0.001), with the barren and starved control urchins having darker coloration than any of the fed urchins (p<0.05). This trend continued through week 10 (one-way ANOVA, F(5,138) = 12.758, p<0.001) and week 12 (one-way ANOVA, F(5,140) = 15.331, p<0.001).

Gonad firmness was variable across treatments and time (Fig. 3E). At 8 weeks, there was no significant difference in gonad firmness among treatments (one-way ANOVA, F(5,138) = 1.0501, p = 0.391). By week 10, significant differences in firmness arose (one-way ANOVA, F(5,138) = 3.5554, p = 0.005), with the gonads in starved control sea urchins being significantly firmer than in the barren or pellet-fed sea urchins (p < 0.05). In week 12, differences were more pronounced (one-way ANOVA, F(5,138) = 9.1602, p < 0.001), where all fed sea urchins had firmer gonads than either the barren or starved sea urchins (p < 0.05), although there was no difference in gonad firmness between barren and control sea urchins and no differences among the fed sea urchins.

Consumption Rates in 2024

During each sampling event, there always was food left in each replicate. Fouling kelp was consumed significantly slower than either bull kelp or kelp wrack in the 12-week trial (one-way ANOVA, F(2,186) = 41.9589, p = 8.882e-16). On average, fouling kelp was consumed at a rate

of 1.67±0.89 g/day/urchin compared to 3.76±2.1 g/day/urchin for bull kelp and 4.37±1.96 g/day/urchin for kelp wrack.

2-8 Week Ranching Trial in 2025

No sea urchin mortality occurred during the 2-8-week ranching trial. This trial was only done at one site (Kasitsna Bay Laboratory dock) because no site differences were seen in the longer 8-12-week trial (Table 1). At this one site, differences in sea urchin characteristics were found among the feeding treatments and across time (Table 2). Based on all morphological measurements combined, the initial collection of wild sea urchins from the barren grouped with all the ranched sea urchins that were sampled after 2 weeks, regardless of feeding treatment (Fig. 4). It appears that 2 weeks was not enough time to bring about difference in the sea urchin characteristics among any of the treatments. At 4 weeks, sea urchin characteristics changed enough that they no longer grouped with the initial and 2-week urchins. That said, the 4, 6, and 8-week urchins from the barren and the starved control sea urchins grouped apart from the sea urchins that were fed ad libitum. It should be noted that the wrack-fed sea urchins in this trial were fed Fucus-based rather than the kelp-based wrack used in the 2024 trials. The characteristics of the 4-week Fucus wrack-fed sea urchins were still similar to the barren and starved control sea urchins and did not obtain characteristics similar to the other fed sea urchins until week 6. Similar to the 8-12-week trial, the sea urchins fed pellets grouped the furthest away from the other feeding treatments (Fig. 4).

Gonad indices were similar among all treatments and sea urchins from the barren at week 2 (one-way ANOVA, F(4,40) = 0.757, p = 0.559) but diverged depending on feeding treatment at week 4 (Fig 5A; one-way ANOVA, F(4,40) = 38.155, p = 3.748e-13). At 4 weeks, GI were significantly different between either barren sea urchins, starved sea urchins, or Fucus wrackfed sea urchins and those fed pellets or fouling kelp (p<0.05). Significant GI differences among treatments continued at week 6 (one-way ANOVA, F(4,40) = 41.911, p<0.001) and week 8 (one-way ANOVA, F(4,38) = 71.143, p = 0). At week 6, barren and starved control sea urchins had significantly smaller GI than any of the fed sea urchins (p<0.05). Among those, the pellet and fouling kelp fed sea urchins had the largest GI (p<0.05). Fucus wrack fed sea urchins produced intermediate sized gonads at week 6. Trends were similar at week 8, with the barren and starved control sea urchins having significantly smaller GI and pellet-fed sea urchins having significantly larger gonads. Fouling kelp-fed sea urchins did not perform as well as pellet-fed sea urchins but they still had significantly larger gonads than Fucus wrack-fed sea urchins (p<0.05). Similar to the longer, 12-week trial, feeding with pellets produced the largest overall GI (Figs. 4 and 5). Additionally, the Fucus wrack treatment in this trial did not perform as well as kelp wrack did in the longer trial.

Gut indices showed no pattern and were highly variable for the first 6 weeks of this trial (Fig. 5B). Gut indices were similar among treatments at week 2 (one-way ANOVA, F(4,40) = 2.549, p = 0.054), week 4 (one-way ANOVA, F(4,40) = 0.717, p = 0.585), and week 6 (one-way ANOVA, F(4,40) = 1.992, p = 0.114). This changed in week 8 (one-way ANOVA, F(4,38) = 6.523, p = 0.0004), when the pellet-fed sea urchins had significantly smaller gut indices than all other sea urchins except for the starved control sea urchins (p<0.05). Also in week 8, the fouling kelp-fed sea urchins had significantly larger gut indices than pellet-fed sea urchins but smaller gut indices than the *Fucus* wrack-fed sea urchins (p<0.05). In week 8, the low pellet-fed gut index was similar to what was seen for that treatment in the 8–12-week trial.

Gonad color was variable after the first 2 weeks of this trial with no significant differences among treatments (Fig 5C, one-way ANOVA, F(4,40) = 0.703, p = 0.595) but by week 4, color had similar patterns as in the longer trial (Fig. 5C and 4D). At week 4, there was no significant

difference in the color of sea urchin gonads from the barren and the starved control sea urchins (p<0.05). There was also no difference in the gonad color of sea urchins fed any type of food (p<0.05). These fed sea urchins generally had gonads with more marketable coloration (yellow to orange; closer to category 1) than did barren or control sea urchins. By week 6, gonad color differences among some treatments continued (one-way ANOVA, F(4,40) = 0.689, p = 0.0005584), with the control sea urchins having significantly more brown/grey color than sea urchins that were fed any type of food (p<0.05). By week 8, there were no longer significant differences in gonad color among any of the treatments (one-way ANOVA, F(4,40) = 1.578, p = 0.200), with sea urchins from all treatments having more yellow-orange coloration. In general, however, sea urchins that were fed some sort of food typically had a more yellow-orange color than the ones that were starved or collected from the wild, although the differences were not always significant. This was consistent with the findings from the 12-week trial (Figs. 4 and 5).

Similar to the 12-week trial, gonad firmness was variable across time and feeding treatment (Fig. 5D). At week 2, firmness was similar among treatments (one-way ANOVA, F(4,40) = 1.4884, p = 0.2239). At week 4, significant differences arose (one-way ANOVA, F(4,40) = 6.5559, p = 0.0003727), with the barren sea urchins having significantly firmer gonads than the starved control, the pellet, or fouling kelp-fed sea urchins (p<0.05). Additionally, *Fucus* wrackfed sea urchins had significantly firmer gonads than the pellet-fed sea urchins (p<0.05) by week 4. By week 6, significant differences continued (one-way ANOVA, F(4,40) = 3.9931, p = 0.008096) with the *Fucus* wrack-fed sea urchins having firmer gonads than the control and pellet-fed sea urchins (p<0.05). By week 8, gonad firmness continued to be significantly different (one-way ANOVA, F(4,38) = 3.261, p = 0.022), with the control sea urchins having firmer gonads than the pellet-fed sea urchins (p<0.05). The lack of consistent results with gonad firmness over time was similar to the 12-week trial (Figs. 4E and 5D).

Assimilation of food

The three food sources fed to sea urchins in the 2–8-week ranching trial (*Fucus* wrack, pellets, and fouling kelp) had different carbon stable isotope values, with the most ^{13}C -enriched source being fouling kelp with -14.1 ‰, followed by *Fucus* wrack of -16.0 ‰, and pellets being the most ^{13}C -depleted source with -23.6 ‰ (Fig. 6). The gonads of sea urchins from the barren had consistent carbon stable isotope values during the initial and week 2 sampling (about -18.5 ‰), but then dropped by 2-3 ‰ in weeks 4 - 8. In contrast, the $\delta^{13}\text{C}$ values of starved control sea urchin gonads stayed relatively consistent, and similar to barren urchins in the first 2 weeks, over the duration of the trial. At week 2, the $\delta^{13}\text{C}$ values of gonads of sea urchins in most feeding treatments were similar to those of barren sea urchins, except those being fed pellets. The gonads of pellet-fed sea urchins were already close to the source carbon isotope value at week 2 and approached this source value even more closely in weeks 4 - 8. The $\delta^{13}\text{C}$ values of gonads of sea urchins feeding on fouling kelp approached the isotope value of their source more slowly, and the $\delta^{13}\text{C}$ values of gonads were still about 2 ‰ lower than the source by week 6 and 8. Gonads of *Fucus* wrack-fed sea urchins did not change over the 8 weeks of the trial and did not approach the $\delta^{13}\text{C}$ values of their source.

Discussion

This study has shown that high latitude green sea urchins collected from barrens with little to no macroalgal food can obtain marketable gonads when fed, especially kelp-based foods, while being held in suspended traps. These results are similar to other studies that obtained marketable gonads after ranching (Juinio-Meñez et al. 2008, Gardner et al. 2021). Based primarily on their gonad index (over 15%) and color (orange-yellow), urchins that were ranched in this study were market-ready at 6 weeks in the shorter-term trial and at 8 weeks (first

sampling) during the longer trial. Gonad firmness was found to be variable among treatments and over time so this was deemed not to be a good measure for marketability in this study. These results are promising for potential green sea urchin ranchers in high-latitude estuarine systems.

All ranched sea urchins were marketable in this study at the end of both trials, but results differed among feeding treatments. In both trials, sea urchins fed pellets were morphologically different from sea urchins that were fed other diets or starved (Figs. 2 and 3). These pellet-fed sea urchins had larger gonad indices and smaller gut indices when compared to other sea urchins (Figs. 4 and 5). A similar study found better gonad growth with prepared feed (Azad et al. 2011). Although not significant, the pellet-fed urchins in our study had softer gonads but they still held together, so would be appropriate for market. The pellet food was quickly assimilated by the sea urchins and invested into gonad production, based on the carbon stable isotope data, because sea urchin gonads respond quickly to the δ^{13} C values of their algal-based diet (Cyrus et al. 2019). This mirrored the fast development of gonads once sea urchins were fed pellets, as seen in the quick increase of the GI in this feeding treatment. The fast approximation of gonad δ¹³C values to the diet makes sense because gonads in these sea urchins were newly produced, instead of turned over tissue, which typically takes a longer time (McBride et al. 1999). In addition, prepared feeds such as the pellets in this study, are known to enhance gonad growth over natural foods, typically based on water content of the feed, with prepared feeds (pellets) being more nutritionally concentrated (Zhao et al. 2016). This was consistent with the fast approximation of gonad tissue δ^{13} C values in the pellet-fed sea urchins in our study, compared to fouling kelp-fed sea urchins. Given these results, prepared pellets may be a good option as an urchin feed, particularly in areas where wild kelp are not available. We do caution, however, that we did not conduct any human sensory evaluations on the gonads and this should be considered before large-scale ranching begins as specific food types can influence smell, taste, and aftertaste (Siikavuopio et al. 2007, Phillips et al. 2009).

Kelp in its various forms (wrack, fouling, and wild) produced similar morphological results, but the gonads of the Fucus wrack-fed sea urchins in the shorter trial were more similar to barren collected sea urchins and starved control sea urchins. When sea urchins were fed *Fucus* wrack, their gonads were small (not marketable) and their guts were relatively full (Fig. 5). This indicates that they were feeding but were not converting the food they had in their guts into gonad production. Sea urchins fed Fucus wrack did not seem to absorb nutrition from the feed for gonad production, as evidenced by the lack of assimilation of the food source (no approximation of gonad δ^{13} C values to the source and low GI over time). Despite that *Fucus* wrack remains reproductively viable over the summer in the study region (Ulaski et al. 2020), and it was consumed by sea urchins in the trial (see increased out index), it does not seem to be invested into gonad production. Possibly, this is related to the occasionally low lipid and other nutritional content of Fucus in the study region (Kim and Iken 2024). This result was unsurprising as sea urchins prefer a kelp to non-kelp diet and tend to grow larger gonads on preferred food (Larson et al. 1980). The assimilation of kelp food (fouling kelp) was documented in the steady approximation of the gonad δ^{13} C values to those of the fouling kelp. In one study, green sea urchins were found to prefer fresh bull kelp (Nereocystis leutkeana) (Vadas 1977), which we used successfully in our first 12-week trial. The kelp wrack and fouling kelp used in this study were a mix of N. leutkeana, Cymethaera triplicata, Saccharina latissima, Alaria marginata, and Costaria costata. Unlike another study (Larson et al. 1980), when a mix of kelp species was used, no significant differences in sea urchin gonad and morphological characteristics were found compared to sea urchins fed a single species (N. leutkeana). One morphological characteristic that did not correlate with food was the LI. Lantern indices have sometimes shown a relationship with food (Heflin et al. 2012), but results have not been

consistent (Russell 1998, Lau et al. 2009). The lack of a strong relationship between food and LI suggests that most sea urchins, except for barren and, to a lesser degree, starved control sea urchins, were feeding at a similar rate and were ingesting a similar amount of food (Black et al. 1984).

Both the pellet and the fouling kelp food sources were quickly assimilated by sea urchins and invested into gonad production, based on the carbon stable isotope data, as sea urchin gonads are a newly produced tissue and respond quickly to the δ^{13} C values of their algal-based diet (Cyrus et al. 2019). In addition, prepared feeds such as the pellets in this study, are known to enhance gonad growth over natural foods, typically based on water content of the feed, with prepared feeds (pellets) being more nutritionally concentrated (Zhao et al. 2016). This was consistent with the fast approximation of gonad tissue δ^{13} C values in the pellet-fed sea urchins in our study, compared to fouling kelp-fed sea urchins. Notably, the δ^{13} C values of sea urchins from the barren changed dramatically between weeks 2 and 4, while the starved control sea urchins did not. Coincidentally, there was an increase in gut index, gonad color, and gonad firmness in week 4 in gonads of the barren sea urchins, even though there was no discernable response in GI. It is possible that sea urchins in the barren were able to start feeding on a seasonally available food source in late May (week 4), such as the development of benthic diatom films (authors, pers. obs.). Benthic microalgae are important in the development of newly metamorphosed sea urchins (Xing et al. 2007, Zupo et al. 2018), but it is possible they also serve as a food source for adult sea urchins in the absence of foliose algae. The distinct drop in δ¹³C values could indicate that sea urchins in the barren went from starvation (often characterized by higher δ^{13} C values, Hertz et al. 2015) to feeding on a seasonal food source, which was not observed in the experimentally starved urchins.

This study found that ranching location had no impact on gonad development in ranched sea urchins. This is similar to another study that found that sea urchin collection location had no impact on ranching results (James et al. 2023). Our sites consisted of two oyster farms in two different bays and a dock in a third bay. This lack of location differences is unsurprising as some environmental characteristics that are expected to vary with sites, such as light, have been found to have little influence on gonad growth, especially when compared to food quality and quantity (Matheson and Gagnon 2021). Environmental site characteristics were not quantified in this study, but all sites are located in larger Kachemak Bay, which is known for having oceanic conditions (Spurkland and Iken 2011) and many successful oyster farms. While no site effects on gonad development were found, further study of environmental conditions may be worthwhile. One environmental characteristic that might be worth further examination is temperature (McBride et al. 1997). It has been shown that capturing sea urchins in cooler water and ranching them at a site with relatively warmer water increases gonad production (James et al. 2007). Additionally, increased gonad growth has been achieved at higher temperatures in summer compared to winter (Siikavuopio et al. 2006). In contrast to gonad growth, gonad color, texture, and firmness were found to not be significantly affected by temperature, diet, or the interaction of these two factors (Azad et al. 2011).

We recommend that future green sea urchin ranching start with a sensory evaluation to examine smell, taste, and aftertaste. Different foods can produce different sea urchin flavors and smells, and preferred taste can depend on the market (Phillips et al. 2009, Takagi et al. 2020). We also recommend that the ranching site be one where other invertebrates thrive as an indicator of generally amenable conditions. For this study, we used oyster farms and a dock with little boat traffic. We found farms and docks to be desirable because traps could easily be brought to the surface for feeding and harvesting. A kelp product (wild, fouling, wrack, or pelletized) should be used with sea urchins being fed approximately 6 g of kelp per day per

green sea urchin. Initial sampling of the sea urchins for market-readiness could start at 6 weeks in locations from productive regions harboring a diverse marine (invertebrate) community. We used sea urchins with 30-50 mm test size in this study because that was the available size in the barren. If larger sea urchins are used, more food and a longer time may be needed. It should also be noted that overall results may vary if differently sized green sea urchins (Pearce et al. 2004) or different species of sea urchins are used.

Acknowledgments

This study was funded by the Alaska Mariculture Cluster, a project of the Southeast Conference, through a grant from the U.S. Economic Development Administration (EDA). We thank the Oyster Cove Farm and the Moss Island Oyster Farm for allowing us to ranch sea urchins at their farms and particularly Sean Crosby for all his support. Logistic support and additional ranching location were provided by the Kasitsna Bay Laboratory. We thank Frank Hurd and Norah Eddy at the Nature Conservancy for providing the pellets that we tested during both our trials. We thank Emily Nicholson, Riley O'Neil, Zach Vayer, and Hannah Gerrish for assistance in the sea urchin ranching trials and sample processing.

References

- Anderson, M.J., Gorley, R.N., and Clarke, K.R., 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth: PRIMER-E ltd.
- Angwin, R.E., Hentschel, B.T. and Anderson, T.W., 2022. Gonad enhancement of the purple sea urchin, *Strongylocentrotus purpuratus*, collected from barren grounds and fed prepared diets and kelp. *Aquaculture International*, 30(3), pp.1353-1367.
- Azad, A.K., Pearce, C.M. and McKinley, R.S., 2011. Effects of diet and temperature on ingestion, absorption, assimilation, gonad yield, and gonad quality of the purple sea urchin (*Strongylocentrotus purpuratus*). *Aquaculture*, 317(1-4), pp.187-196.
- Barker, M.F., Keough, J.A., Lawrence, J.M., and Lawrence, A.L., 1998. Feeding rate, absorption efficiencies, growth, and enhancement of gonad production in the New Zealand sea urchin *Evechinus chloroticus* Valenciennes (Echinoidea: Echinometridae) fed prepared and natural diets. *Journal of Shellfish Research 17*,1583-159
- Black, R., Codd, C., Hebbert, D., Vink, S. and Burt, J., 1984. The functional significance of the relative size of Aristotle's lantern in the sea urchin Echinometramathaei (de Blainville). *Journal of Experimental Marine Biology and Ecology*, 77(1-2), pp.81-97
- Brundu, G., Farina, S. and Domenici, P., 2020. Going back into the wild: the behavioural effects of raising sea urchins in captivity. *Conservation Physiology*, 8(1), p.coaa015.
- Carrier, T.J., Eddy, S.D. and Redmond, S., 2017. Solar-dried kelp as potential feed in sea urchin aquaculture. *Aquaculture International*, *25*(1), pp.355-366.
- Christiansen, J.S. and Siikavuopio, S.I., 2007. The relationship between feed intake and gonad growth of single and stocked green sea urchin (*Strongylocentrotus droebachiensis*) in a raceway culture. *Aquaculture*, 262(1), pp.163-167.
- Ciriminna, L., Signa, G., Vaccaro, A.M., Visconti, G., Mazzola, A. and Vizzini, S., 2021. Turning waste into gold: Sustainable feed made of discards from the food industries promotes gonad development and colouration in the commercial sea urchin *Paracentrotus lividus* (Lamarck, 1816). *Aquaculture Reports*, 21, p.100881.
- Claisse, J.T., Williams, J.P., Ford, T., Pondella, D.J., Meux, B. and Protopapadakis, L., 2013. Kelp forest habitat restoration has the potential to increase sea urchin gonad biomass. *Ecosphere*, *4*(3), pp.1-19.
- Cyrus, M.D., Bolton, J.J. and Macey, B.M., 2020. The use of stable isotope ratios δ13C and δ15N to track the incorporation of Ulva and other important dietary ingredients into the gonads of the sea urchin *Tripneustes gratilla*. *Aquaculture Nutrition*, *26*(1), pp.174-185.

- Ebert T.A., 1980. Relative growth of sea urchin jaws: an example of plastic resource allocation. Bulletin of Marine Science. 30(2):467–474.
- Edwards, M., Konar, B., Kim, J.H., Gabara, S., Sullaway, G., McHugh, T., Spector, M. and Small, S., 2020. Marine deforestation leads to widespread loss of ecosystem function. *PloS one*, *15*(3), p.e0226173.
- Estes, J.A. and Duggins, D.O., 1995. Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. *Ecological Monographs*, *65*(1), pp.75-100
- Filbee-Dexter, K. and Scheibling, R.E., 2014. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. *Marine Ecology Progress Series*, 495, pp.1-25
- Flukes, E.B., Johnson, C.R. and Ling, S.D., 2012. Forming sea urchin barrens from the inside out: an alternative pattern of overgrazing. *Marine Ecology Progress Series*, *464*, pp.179-194.
- Gardner, L., Lindsey, H., Neylan, K., Chang, W., Herrmann, K., Rintoul, M. and Roy, K., 2021. Preliminary feasibility assessment of purple sea urchin, *Strongylocentrotus purpuratus*, roe enhancement. *Bulletin of Japan Fisheries Research and Education Agency*, 50, pp.47-53.
- Garrido, C.L. and Barber, B.J., 2001. Effects of temperature and food ration on gonad growth and oogenesis of the green sea urchin, *Strongylocentrotus droebachiensis*. *Marine Biology*, *138*(3), pp.447-456.
- Guarnieri, G., Bevilacqua, S., Figueras, N., Tamburello, L. and Fraschetti, S., 2020. Large-scale sea urchin culling drives the reduction of subtidal barren grounds in the Mediterranean Sea. *Frontiers in Marine Science*, 7, p.519
- Guillou M., Lumingas, C., and Michel, C., 2000, The effect of feeding or starvation on resource allocation to body components during the reproductive cycle of the sea urchin Sphaerechinus granularis (Lamark). Journal of Experimental Marine Biology and Ecology, 245,183-196
- Heflin, L.E., Gibbs, V.K., Powell, M.L., Makowsky, R., Lawrence, A.L. and Lawrence, J.M., 2012. Effect of diet quality on nutrient allocation to the test and Aristotle's lantern in the sea urchin *Lytechinus variegatus* (Lamarck, 1816). *Journal of Shellfish Research*, *31*(3), p.867.
- Hertz, E., Trudel, M., Cox, M.K. and Mazumder, A., 2015. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. *Ecology and Evolution*, *5*(21), pp.4829-4839.
- James, P.J., Heath, P. and Unwin, M.J., 2007. The effects of season, temperature and initial gonad condition on roe enhancement of the sea urchin *Evechinus chloroticus*. *Aquaculture*, 270(1-4), pp.115-131.
- James, P., Evensen, T. and Johansson, G., 2023. Effect of Season and Increased Temperature on survival, roe enhancement, and reproductive cycle of the green sea urchin (*Strongylocentrotus droebachiensis*) collected from four relatively close sites in Northern Norway. *Aquaculture Research*, 2023(1), p.6360865.
- Jangoux, M., 1998. Land-based, closed-cycle echiniculture of *Paracentrotus lividus* (Lamarck) (Echinoidea: Echinodermata): a long-term experiment at a pilot scale. *Journal of Shellfish Research*, *17*, pp.152-153.
- Juinio-Meñez, M.A., Bangi, H.G.P. and Malay, M.C.D., 2008. Effect of type of feed, stocking density and grow-out site on gonad index, growth and survivorship of cultured sea urchin (*Tripneustes gratilla*). *The Philippine Agricultural Scientist*, *91*, pp.439-449.
- Kaharudin, H.A., O'Connor, S., Kroh, A. and Kealy, S., 2024. Staple or delicacy: Sea urchin exploitation over the last 40,000 years at Makpan Cave, Alor Island. *The Journal of Island and Coastal Archaeology*, pp.1-28.

- Keats, D.W., Steele, D.H. and South, G.R., 1984. Depth-dependent reproductive output of the green sea urchin, *Strongylocentrotus droebachiensis* (OF Müller), in relation to the nature and availability of food. *Journal of Experimental Marine Biology and Ecology*, 80(1), pp.77-91.
- Kim, M.A. and Iken, K., 2024. Effects of glacial discharge on thallus condition of northern rockweed (*Fucus distichus*) in the Gulf of Alaska. *Journal of Experimental Marine Biology and Ecology*, 576, p.152019.
- Konar, B., 2001. Seasonal changes in subarctic sea urchin populations from different habitats. *Polar Biology*, *24*(10), pp.754-763.
- Krumhansl, K.A., Okamoto, D.K., Rassweiler, A., Novak, M., Bolton, J.J., Cavanaugh, K.C., Connell, S.D., Johnson, C.R., Konar, B., Ling, S.D. and Micheli, F., 2016. Global patterns of kelp forest change over the past half-century. *Proceedings of the National Academy of Sciences*, *113*(48), pp.13785-13790.
- Larson, B.R., Vadas, R.L. and Keser, M., 1980. Feeding and nutritional ecology of the sea urchin *Strongylocentrotus drobachiensis* in Maine, USA. *Marine Biology*, *59*(1), pp.49-62.
- Lau, D.C.C., Lau, S.C.K., Qian, P.Y., Qiu, J.W., 2009. Morphological plasticity and resource allocation in response to food limitation and hyposalinity in a sea urchin. Journal of Shellfish Research. 28(2):383–388.
- Levitan, D.R., 1991. Skeletal changes in the test and jaws of the sea urchin *Diadema antillarum* in response to food limitation. *Marine Biology*, *111*(3), pp.431-435.
- Matheson, K. and Gagnon, P., 2021. Growth and feeding resilience of green sea urchin (*Strongylocentrotus droebachiensis*) to visible-light quantity and quality. *Marine Biology*, 168(12), p.179.
- McBride, S.C., Pinnix, W.D., Lawrence, J.M., Lawrence, A.L. and Mulligan, T.M., 1997. The effect of temperature on production of gonads by the sea urchin *Strongylocentrotus* franciscanus fed natural and prepared diets. *Journal of the World Aquaculture Society*, 28(4), pp.357-365.
- McBride, S.C., Lawrence, J.M., Lawrence, A.L. and Mulligan, T.J., 1999. Ingestion, absorption, and gonad production of adult *Strongylocentrotus franciscanus* fed different rations of a prepared diet. *Journal of the World Aquaculture Society*, *30*(3), pp.364-370.
- Meidel, S.K. and Scheibling, R.E., 1998. Annual reproductive cycle of the green sea urchin, Strongylocentrotus droebachiensis, in differing habitats in Nova Scotia, Canada. Marine Biology, 131(3), pp.461-478.
- Meidel, S.K. and Scheibling, R.E., 1999. Effects of food type and ration on reproductive maturation and growth of the sea urchin *Strongylocentrotus droebachiensis*. *Marine Biology*, *134*(1), pp.155-166.
- Metzger, J.R., Konar, B. and Edwards, M.S., 2019. Assessing a macroalgal foundation species: community variation with shifting algal assemblages. *Marine Biology*, *166*(12), p.156.
- Miller, K.I. and Shears, N.T., 2023. The efficiency and effectiveness of different sea urchin removal methods for kelp forest restoration. *Restoration Ecology*, *31*(1), p.e13754.
- Miller, K.I., Blain, C.O. and Shears, N.T., 2022. Sea urchin removal as a tool for macroalgal restoration: a review on removing "the spiny enemies". *Frontiers in Marine Science*, 9, p.831001.
- Miller, K.I., Balemi, C.A., Blain, C.O., Spyksma, A.J. and Shears, N.T., 2024. Sea urchin roe quality within urchin barrens and improvement through kelp restoration. *Ecosphere*, 15(6), p.e4911.
- Minor, M.A. and Scheibling, R.E., 1997. Effects of food ration and feeding regime on growth and reproduction of the sea urchin *Strongylocentrotus droebachiensis*. *Marine Biology*, 129(1), pp.159-167.

- Pearce, C.M., Daggett, T.L. and Robinson, S.M., 2002. Effect of protein source ratio and protein concentration in prepared diets on gonad yield and quality of the green sea urchin, *Strongylocentrotus droebachiensis*. *Aquaculture*, *214*(1-4), pp.307-332.
- Pearce, C.M., Daggett, T.L. and Robinson, S.M., 2004. Effect of urchin size and diet on gonad yield and quality in the green sea urchin (*Strongylocentrotus droebachiensis*). *Aquaculture*, 233(1-4), pp.337-367.
- Pert, C.G., Swearer, S.E., Dworjanyn, S., Kriegisch, N., Turchini, G.M., Francis, D.S. and Dempster, T., 2018. Barrens of gold: gonad conditioning of an overabundant sea urchin. *Aquaculture Environment Interactions*, *10*, pp.345-361.
- Phillips, K., Bremer, P., Silcock, P., Hamid, N., Delahunty, C., Barker, M. and Kissick, J., 2009. Effect of gender, diet and storage time on the physical properties and sensory quality of sea urchin (*Evechinus chloroticus*) gonads. *Aquaculture*, 288(3-4), pp.205-215.
- Piazzi, L. and Ceccherelli, G., 2019. Effect of sea urchin human harvest in promoting canopy forming algae restoration. *Estuarine, Coastal and Shelf Science*, *219*, pp.273-277.
- R Core Team, 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
- Reynolds, J.A. and Wilen, J.E., 2000. The sea urchin fishery: harvesting, processing and the market. *Marine Resource Economics*, *15*(2), pp.115-126.
- Russell, M.P., 1998. Resource allocation plasticity in sea urchins: rapid, diet induced, phenotypic changes in the green sea urchin *Strongylocentrotus droebachiensis* (Müller) *Journal of Experimental Marine Biology an Ecology*, 220:1–14.
- Senaratna, M., Evans, L.H., Southam, L. and Tsvetnenko, E., 2005. Effect of different feed formulations on feed efficiency, gonad yield and gonad quality in the purple sea urchin *Heliocidaris erythrogramma*. *Aquaculture Nutrition*, *11*(3), pp.199-207.
- Shpigel, M., Schlosser, S.C., Ben-Amotz, A., Lawrence, A.L. and Lawrence, J.M., 2006. Effects of dietary carotenoid on the gut and the gonad of the sea urchin *Paracentrotus lividus*. *Aquaculture*, *261*(4), pp.1269-1280.
- Siikavuopio, S.I., Christiansen, J.S. and Dale, T., 2006. Effects of temperature and season on gonad growth and feed intake in the green sea urchin (*Strongylocentrotus droebachiensis*). *Aquaculture*, *255*(1-4), pp.389-394.
- Siikavuopio, S.I., Dale, T. and Carlehög, M., 2007. Sensory quality of gonads from the green sea urchin, *Strongylocentrotus droebachiensis*, fed different diets. *Journal of Shellfish Research*, 26(2), pp.637-643.
- Spurkland, T. and Iken, K., 2011. Kelp bed dynamics in estuarine environments in subarctic Alaska. *Journal of Coastal Research*, 27(6A), pp.133-143.
- Strand, H.K., Christie, H., Fagerli, C.W., Mengede, M. and Moy, F., 2020. Optimizing the use of quicklime (CaO) for sea urchin management—a lab and field study. *Ecological Engineering:* 143 p.100018.
- Takagi, S., Sato, Y., Murata, Y., Kokubun, A., Touhata, K., Ishida, N. and Agatsuma, Y., 2020. Quantification of the flavor and taste of gonads from the sea urchin *Mesocentrotus nudus* Using GC–MS and a Taste-Sensing System. *Sensors*, *20*(24), p.7008
- Ulaski, B.P., Konar, B. and Otis, E.O., 2020. Seaweed reproduction and harvest rebound in Southcentral Alaska: implications for wild stock management. *Estuaries and Coasts*, *43*(8), pp.2046-2062.
- Vadas, R.L., 1977. Preferential feeding: an optimization strategy in sea urchins. *Ecological Monographs*, *47*(4), pp.337-371.
- Walker, C.W. and Lesser, M.P., 1998. Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, *Strongylocentrotus droebachiensis*: implications for aquaculture. *Marine Biology*, *132*(4), pp.663-676.

- Weitzman, B.P., Konar, B., Edwards, M.S., Rasher, D.B., Kenner, M.C., Tinker, M.T. and Estes, J.A., 2023. Changes in abiotic drivers of green sea urchin demographics following the loss of a keystone predator. *Journal of Marine Sciences*, *2023*(1), p.1198953.
- Xing, R.L., Wang, C.H., Cao, X.B. and Chang, Y.Q., 2007. The potential value of different species of benthic diatoms as food for newly metamorphosed sea urchin *Strongylocentrotus intermedius*. *Aguaculture*, 263(1-4), pp.142-149.
- Zhao, C., Feng, W., Wei, J., Zhang, L., Sun, P. and Chang, Y., 2016. Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. *Journal of the Marine Biological Association of the United Kingdom*, *96*(1), pp.185-195.
- Zupo, V., Glaviano, F., Caramiello, D. and Mutalipassi, M., 2018. Effect of five benthic diatoms on the survival and development of *Paracentrotus lividus* post-larvae in the laboratory. *Aquaculture*, 495, pp.13-20.