Progress Report, April 7, 2025

Title: Advancing Pinto Abalone Farming in Alaska: Developing Protocols for an Efficient Transition from Laboratory Nurseries to Ocean-Farmed Growth Systems.

PI: Dr. Alexei Pinchuk, College of Fisheries and Ocean Sciences, University of Alaska. The project focuses on efficiency of pinto abalone spat transfer from laboratory-based nursery to ocean-based rearing arrays depending on animal's age/size and cage system used. Our overarching goal is to provide prospective abalone farmers with clear protocols for setting up and maintaining pinto abalone spat rearing systems to help plan and manage their mariculture efforts.

The work is being conducted at three different location: UAF Fisheries Department (wet lab) in Juneau, Sea Quester Farms site in Lynn Canal near Juneau, and Metlakatla Indian Community at Annette Island near Ketchikan (Fig. 1).

The following work has been done from the start of the project through April 7, 2025 towards achieving the ultimate project goals:

- We obtained all necessary supplies and Alaska State permissions to start outgrowing efforts in Lynn Canal in collaboration with Sea Quester Farms. The latter include Aquatic Resource Permit (for scientific/collection/holding purposes) and Over-The-Counter Storage Permit. We decided to work with Sea Quester Farms instead of the originally proposed Shikat Oysters Farm because of two reasons: (1) logistics is a lot easier because of close vicinity of the Lynn Canal site to the UAF wet lab; and (2) the deployment in Lynn Canal will test the possibility of pinto abalone farming within the Inside Passage where many farms are located. It will also help to investigate why wild pinto abalone tend to avoid inshore environment.
- We expanded our abalone hatching facility in UAF wet lab, to maintain abalone spat
 hatched in March 2024 and to accommodate new spat produced in the fall 2024. Both
 cohorts will be transferred to outgrow cages once spring weather sets and marine
 production season starts in mid-April or early May. The developing spat has recently
 transformed to mainly kelp-feeding stage which makes them ready for outplanting.

- We designed and built abalone cage prototypes for the outplanting efforts. The materials were obtained from Ketcham Supply, a leading aquatic farming gear manufacturer and distributor located in Main, as well as sourced locally. The prototype contained 2 plastic baskets secured by removable stainless rods inside the protective cage and lined with 1000 μm Nitex mesh. Rectangular plastic inserts were attached to the upper and lower sides of the baskets to provide smooth surface for attachment of the abalone. The assembled cage was equipped with four stainless cables attached to the cage corners on one end and a stainless swivel on the other end (Figure 2). The prototype successfully underwent a month-long initial sea trial (empty, no live abalone) at the Sea Quester Farms site. The cages for the experiments are built and ready.
- We visited Metlakatla Indian Community (MIC) to identify a suitable site near Annette
 Island. The main site is in the direct view from the MIC office among an extensive kelp
 forest which will be harvested to feed abalone. During discussions with MIC members,
 we finalized deployment and maintenance protocols, including handling live abalone.
 We provided members of the MIC with printed and video materials on abalone
 culturing.

This work concludes Deliverable 1.

The following work has been done from April 7, 2025 through October 30, 2025 towards achieving the ultimate project goals:

At UAF CFOS labs in Junea:

- We continued to maintain abalone spat produced in our lab in March and October 2024.
- We delivered 30 individual abalone spat to ADF&G Pathology Lab to establish a
 disease history prior to transport to the Metlakatla Indian Community for culture
 purposes. The spat spawned and cultured in our lab was completely healthy with no
 parasites or infectious agents in their tissues. A copy of the pathology report is
 attached.

At SeaQuester Farm Site (Lynn Canal):

- Experimental Cage #1 with 20 (10 per basket) juvenile abalone ~10 mm long was deployed on May 2, 2025. After a two-week initial assessment, Experimental Cage # 2 with 20 (10 per basket) juvenile abalone was deployed on May 24. Each cage was equipped with a temperature logger and the initial mix of fresh dulse kelp (cultured in the UAF laboratory) and kelp harvested at the farm site were placed into each basket as ad libitum food source for the abalone spat.
- The site was visited bi-weekly (weather permitting). During each visit, cages and spat were visually checked and food was replaced with fresh kelp from the site.
- On July 8, 2025, a census accompanied with individual length measurement was done on all experimental animals. Intensive coverage of newly settled barnacle was observed on the cages and animals. In over 50% of the abalone, barnacles covered over half of the shell surface area blocking abalone respiration pores, so the animals suffocated (Figure 3). Only 4 individuals did not have any barnacle growth. While all individuals were still alive, they barely moved and could not easily attach themselves to the surface. It was clear the future barnacle growth would not leave them any chances of survival. We decided to terminate the experiment at that point.

At Metlakatla Site (Annette Island):

- Two Experimental Cages with 40 (10 per basket) juvenile abalone ~15 mm long were deployed in a protected cove of Annette Island. The cove has naturally growing bull kelp field which is used to harvest food for the experimental abalone. Similarly to previous deployments, each cage was equipped with a temperature logger and the initial mix of fresh dulse kelp (cultured in the UAF laboratory) to provide initial ad libitum food source for the abalone spat.
- The site was visited bi-weekly (weather permitting). During each visit, cages and spat were visually checked and food was replaced with fresh kelp from the site (Figure 4).
- So far, abalone appears to be in good health and increase in size. Minimal barnacle settlement has been observed on the cages, and no spat was infested.

We intend to continue the experiment through the winter to determine how spat
responds to decreased water temperatures and light levels. Winter is a critical time
in northern ecosystems and the data we plan to obtain would improve our
knowledge on pinto abalone and feasibility of their farming in Alaskan waters.

Preliminary Results and Conclusions: Water temperature at the Seaquester Farms Site in Lynn Canal site continually increased from ~6°C to ~12°C through the duration of the experiment (Figure 5), indicating that most favorable conditions for abalone growth were set by the middle of June. For the period of 45 days starting on May 24, the abalone increased in length by 56% from the initial mean 10.95±0.65(95% CI) mm to the final 17.13±1(95% CI) mm length, which corresponds to 0.137 mm day¹ at the average temperature of ~9°C. Larger pinto abalone (40-50 mm of total length) experienced considerably lower increase in length of 8-10% over observation period of 65 days (Paul and Paul, 1981). This indicates that summer conditions for abalone spat growth in Lynn Canal are quite favorable, if damage from barnacle settlement could be avoided.

Our oceanographic observations in Lynn Canal fjords conducted in summer 2019-2021 show that a well-developed peak in barnacle planktonic larvae abundance consistently occurs in late May and continues through late June (Figure 6). This might explain why abalone natural range does not extend into the Inside Passage and lays within coastal North Pacific waters. Despite otherwise favorable conditions, the lethal effect of barnacle settlement on juvenile abalone shells would prevent the establishment of a self-supporting abalone population in inshore waters.

Large concentrations of ready-to-settle larvae directly threaten abalone farming. One way to counter this threat in the future would be to outplant abalone spat later in the season (July) after most of the planktonic barnacle larvae settled and disappeared from the water column. Alternatively, outplanting older animals with larger respiration pores might decrease detrimental effect of the barnacles on abalone growth.

This work concluded Deliverables 2, and contributes to Deliverables 3 and 4 which are underway.

Figure 1. Locations of experimental sites for outplanting experiments.

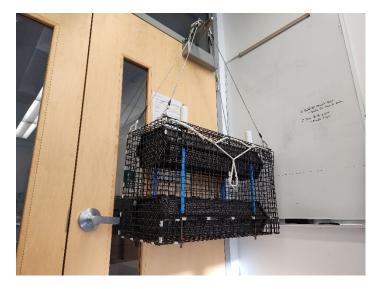


Figure 2. Outplanting abalone cage prototype before deployment.

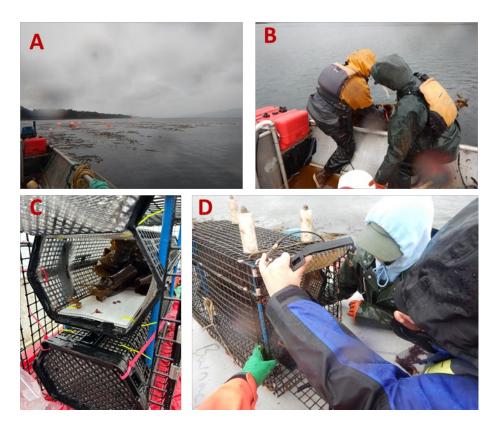


Figure 3. Operations at SeaQuester Farms site (Lynn Canal): A – farm site, B – deployment of the cages, C and D – inspection and feeding of abalone spat.

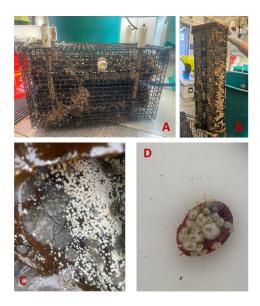


Figure 4. Barnacle colonization of the cages, kelp and abalone spat at SeaQuester Farms site (Lynn Canal): A – Cage #1 after \sim 65 days exposure, B – individual basket after \sim 65 days exposure, C – kelp food, D - abalone shell.

Figure 4. Operations at Metlakatla Site (Annette Island): A – choosing healthy kelp to feed abalone spat, B – abalone spat after \sim 30 days of exposure, C – harvesting wild kelp at the site

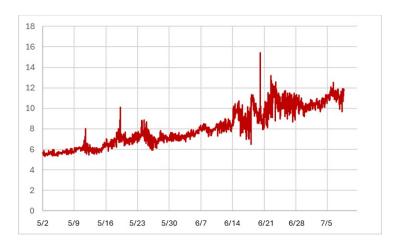


Figure 5. Water temperature (°C) at Seaquester Farm site.

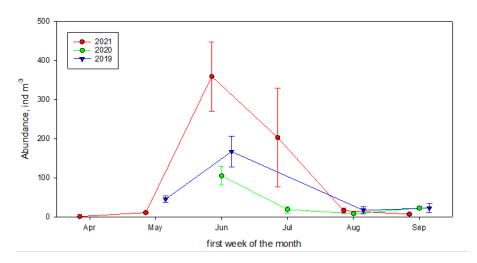


Figure 6. Interannual abundance of barnacle cyprid larvae in Lynn Canal fjords (Auke Bay, Gastineau Channel, Berners Bay combined) in 2019-2021. Data from the EPSCOR Fire and Ice Project provided by A. Pinchuk and A. Knobloch (UAF).